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Abstract

Variational Bayesian Monte Carlo (VBMC) is a novel framework for tackling approximate
posterior and model inference in models with black-box, expensive likelihoods by means
of a sample-efficient approach (Acerbi, 2018). VBMC combines variational inference with
Gaussian-process (GP) based, active-sampling Bayesian quadrature, using the latter to
efficiently approximate the intractable integral in the variational objective. VBMC has
been shown to outperform state-of-the-art inference methods for expensive likelihoods on
a benchmark consisting of meaningful synthetic densities and a real model-fitting problem
from computational neuroscience. In this paper, we study the performance of VBMC under
variations of two key components of the framework. First, we propose and evaluate a new
general family of acquisition functions for active sampling, which includes as special cases
the acquisition functions used in the original work. Second, we test different mean functions
for the GP surrogate, including a novel squared-exponential GP mean function. From our
empirical study, we derive insights about the stability of the current VBMC algorithm,
which may help inform future theoretical and applied developments of the method.

Keywords: Bayesian quadrature; black-box inference; variational inference

1. Introduction

Many models in the computational sciences, in engineering, and machine learning are char-
acterized by black-box expensive likelihoods. The research for active, sample-efficient meth-
ods to optimize such models by means of statistical surrogates — e.g., Gaussian processes
(GPs; Rasmussen and Williams, 2006) — has been extremely succesful, spawning the field
of Bayesian optimization (Jones et al., 1998; Brochu et al., 2010; Snoek et al., 2012; Shahri-
ari et al., 2016; Acerbi and Ma, 2017). Despite the outstanding successes of GP-based
surrogate modeling for optimization, a suprisingly few works have adopted a similar ap-
proach for the harder problem of full (approximate) Bayesian inference, which entails: (a)
reconstructing the full posterior distribution (Kandasamy et al., 2015; Wang and Li, 2018);
(b) computing the marginal likelihood, a key metric for model selection (Ghahramani and
Rasmussen, 2002; Osborne et al., 2012; Gunter et al., 2014; Briol et al., 2015). To these
ends, we recently proposed Variational Bayesian Monte Carlo (VBMC), an approximate
inference framework that, by combining variational inference and Bayesian quadrature, ef-
ficiently computes both an approximate posterior and an estimate of the evidence lower
bound (ELBO), a lower bound on the marginal likelihood (Acerbi, 2018). VBMC outper-
formed state-of-the-art inference algorithms for expensive likelihoods on a benchmark that
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includes synthetic likelihoods with realistic, challenging properties, and a real model-fitting
problem from computational neuroscience (Acerbi, 2018).

The VBMC framework includes several algorithmic features which were mostly fixed in
the original paper, and deserve further exploration. Key components of VBMC include:

1. The acquisition function a(x) used in active sampling. The surrogate optimization
of a(x) decides which point x ∈ X of the expensive likelihood is queried next, where
X ⊆ RD is the domain of model parameters (we tested up to D = 10). The acquisition
function embodies the crucial role of balancing exploration vs. exploitation.

2. The GP model. While GP covariance and likelihood functions are almost fully deter-
mined by the desire to have an analytical expression for the surrogate ELBO, there
is some freedom in the design of the GP mean function under this constraint.

In this paper, we perform an empirical evaluation of variants of these two main features
of the VBMC algorithm. First, we recap in Section 2 the main formulation of VBMC. In
Section 3.1, we introduce a novel family of acquisition functions, which includes as specific
cases the two acquisition functions described in the original paper. In Section 3.2, we
introduce a novel GP mean function. We then report in Section 4 results of our experiments
with different acquisition and mean functions. Finally, we discuss in Section 5 our findings
and further extensions of the framework.

Code for the VBMC algorithm is available at: https://github.com/lacerbi/vbmc.

2. Variational Bayesian Monte Carlo (VBMC)

We summarize here the main features of VBMC; see Acerbi (2018) for details. Let f =
p(D|x)p(x) be the expensive target log joint probability (unnormalized posterior), where
p(D|x) is the model likelihood for dataset D and parameter vector x, and p(x) the prior.

In each iteration t, the algorithm: (1) actively samples sequentially a batch of nactive
‘promising’ new points that maximize a given acquisition function, and for each selected
point x∗ evaluates the target y∗ ≡ f(x∗);1 (2) trains a GP surrogate model of the log joint
f , given the training set Ξt = {Xt,yt} of points and their associated observed values so
far; (3) updates the variational posterior approximation, indexed by φt, by optimizing the
surrogate ELBO. This loop repeats until reaching a termination criterion (e.g., budget of
function evaluations). We use nactive = 5, as in Acerbi (2018). VBMC includes an initial
warm-up stage to converge faster to regions of high posterior probability (see Acerbi, 2018).

Variational Posterior The variational posterior is a flexible mixture of K Gaussians,
q(x) ≡ qφ(x) =

∑K
k=1wkN

(
x;µk, σ

2
kΣ
)
, where wk, µk, and σk are, respectively, the

mixture weight, mean, and scale of the k-th component; Σ is a common diagonal covariance

matrix Σ ≡ diag[λ(1)
2
, . . . , λ(D)2]; and the number of components K is set adaptively. The

vector φ summarizes all variational parameters.

Gaussian Process Approximation In VBMC, the log joint f is approximated by a GP
with a squared exponential (rescaled Gaussian) kernel, a Gaussian likelihood with small
observation noise (for numerical stability), and a negative quadratic mean function (see

1. When possible, we apply a rank-1 update of the current GP posterior after each new evaluation.
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Section 3.2). Initially, the GP hyperparameters are estimated via MCMC sampling (Neal,
2003); marginalization over the GP hyperparameter posterior is crucial to properly represent
model uncertainty, a key element of active sampling. Training of the GP model switches to
gradient-based optimization when the contribution of the variance of the ELBO due to sam-
pling decreases below a given threshold, suggesting that the posterior over hyperparameters
is reasonably summarized by a point estimate (see Acerbi, 2018 for details).

The Evidence Lower Bound (ELBO) Using the GP surrogate f , and for a given
variational posterior qφ, we can estimate the posterior mean of the surrogate ELBO as

Ef |Ξ [ELBO(φ)] = Ef |Ξ [Eφ [f ]] +H[qφ], (1)

where Ef |Ξ [Eφ [f ]] is the (expected) expected log joint, and H[qφ] is the entropy of the
variational posterior. Crucially, our choice of variational family and of GP representa-
tion affords an analytical computation of the posterior mean and variance of the expected
log joint (and of their gradients) by means of Bayesian quadrature (BQ; O’Hagan, 1991;
Ghahramani and Rasmussen, 2002; see also Appendix A). Entropy and its gradient are
estimated via simple Monte Carlo and the reparameterization trick (Kingma and Welling,
2013; Miller et al., 2017), such that Equation (1) is amenable to stochastic optimization
(Kingma and Ba, 2014).

3. Exploring the Components of VBMC

3.1. Acquisition Functions

In principle, VBMC needs to solve a complex sequential decision-making problem which
consists of evaluating the expensive log joint f at a sequence of points x1, . . . ,xt such
that the approximate posterior qφ converges as closely as possible to the ground truth,
for a given budget of function evaluations. In practice, such problem is intractable and
we instead adopt a heuristic — the acquisition function — which, based on our current
model of the log joint, grades which points are more advantageous to evaluate next. The
ideal acquisition function for VBMC should balance exploitation of known regions of high
probability mass (so as to refine our approximation) and exploration of uncertain regions
(which might contain yet undiscovered amounts of probability mass). While we generally
want to find probability mass, for convenience we will use probability density as a proxy.

We introduce here a novel family of generalized uncertainty sampling (GUS) acquisition
functions,

agus(x) = V α
Ξ (x)qβφ(x) exp

(
γfΞ(x)

)
, α, β, γ ≥ 0, (2)

where fΞ(x) and VΞ(x) are, respectively, the GP posterior predictive mean and variance
at x given the current training set Ξ, and qφ is the variational posterior. Equation (2) is
a generalization of the expression of the variance of the integrand involving the log joint in
Equation (1).

For α = 1, Equation (2) with β = 2, γ = 0 is equivalent to vanilla uncertainty sampling,
whereas with β = 1, γ = 1 we obtain prospective uncertainty sampling, as described in Acerbi
(2018). Here, we also consider the case β = 0, γ = 2, which ignores the current variational
posterior and performs full GP-uncertainty sampling. By increasing α, we increase the
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focus on exploration (regions of high uncertainty) vs. exploitation (regions of high posterior
probability). A particularly interesting option is to make α iteration-dependent, motivated
by acquisition functions such as UCB (Srinivas et al., 2010). Here, we consider β, γ = 1,
with α(n) = max(1, log n) (logarithmic) and α(n) =

√
n (square root), where n is the

number of points in the training set. Note that Equation (2) can be reduced from 3 to 2
parameters with virtually no loss of generality (see Appendix B).

3.2. GP Mean Functions

In VBMC, the GP (prior) mean function implicitly affects exploration vs. exploitation by
setting the value of the GP posterior mean far away from points in the current training set.

In our prior work, we argued that a negative quadratic function is theoretically preferable
to constant because it ensures that the posterior GP predictive mean f is a proper log
probability distribution (that is, it is integrable when exponentiated; Acerbi, 2018). On the
other hand, a mean function that decreases too quickly may curb exploration outside the
training set. As an intermediate alternative, we introduce here the squared exponential GP
mean function,

mSE(x) = m0 + h exp

[
−1

2
Q(x)

]
, with Q(x) ≡

D∑
i=1

(
x(i) − x(i)m

)2
ω(i)2

, (3)

where m0 is a constant offset, h the height of the ‘bump’, and xm and ω are vectors of,
respectively, location and scale parameters. For comparison, the standard negative quadratic
GP mean function for VBMC is mNQ(x) = m0 − 1

2Q(x), and a typical mean function for
GP regression is constant, mCN(x) = m0.

The interpretation of mNQ, once exponentiated, is that of a global multivariate normal
approximation with diagonal covariance (e.g., similar to an axis-aligned Laplace approx-
imation), whereas mSE can be thought of as a locally Gaussian approximation (near the
maximum), which becomes constant asymptotically. In any case, note that the (prior) mean
function does not constrain the shape of the GP — that is, the posterior GP mean may
well be multimodal and non-axis aligned. The role of the GP mean function is mostly in
dictating the GP behavior far from observed points.

Crucially, all the considered mean functions afford analytical expressions for the expected
log joint in Equation (1), by means of Bayesian quadrature (see Appendix A). Note that,
of these functions, only mNQ leads to a proper posterior distribution; but whether this
property matters in practice for the algorithm remains an empirical question.

4. Experiments

Procedure We tested variants of VBMC to perform inference of the posterior distribution
and model evidence on the following families of problems:

1. Three families of synthetic target likelihoods, for D ∈ {2, 6, 10}. Lumpy : mildly mul-
timodal distributions obtained as clumped mixtures of twelve multivariate Gaussians;
Student : heavy-tailed, multivariate Student’s t distributions; Cigar : single multivari-
ate Gaussians with highly correlated covariance matrix.
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2. A real model-fitting problem from computational neuroscience, with two posterior
densities computed from a complex model of neuronal orientation selectivity in visual
cortex, applied to neural recordings of, respectively, one V1 and one V2 cell (D = 7;
data and model from Goris et al., 2015).

See Acerbi (2018) for an extended description of the tested target distributions.
We evaluated inference performance by tracking (a) the absolute error between the

ELBO and the true log marginal likelihood (LML), and (b) the “Gaussianized” symmetrized
Kullback-Leibler divergence (gsKL) between approximate posterior and ground truth.

a. We measure the model evidence approximation in terms of absolute error from ground
truth, since differences of LML are used for model comparison. For reference, differ-
ences of LML of 10 points or more are often presented as decisive evidence in favor of
one model (Kass and Raftery, 1995), while errors � 1 can be considered negligible.

b. The gsKL, introduced in Acerbi (2018), is defined as the symmetrized KL divergence
between two multivariate normal distributions with mean and covariances equal, re-
spectively, to the moments of the approximate posterior and the moments of the true
posterior. For reference, two Gaussians with unit variance and whose means differ by√

2 (resp., 1
2) have a gsKL of 1 (resp., 1

8).

As a rule of thumb, for both metrics we consider a solution “usable” if it is at least less
than 1 (ideally, much lower than that). For synthetic problems, we evaluated ground-truth
posteriors and model evidence analytically or via simple numerical integration; for real
model-fitting problems, we employed extensive MCMC sampling (Acerbi, 2018).

For each VBMC variant we performed at least 20 runs per inference problem, with
randomized starting points, and for each performance metric we report the median and
95% CI of the median (bootstrapped). For each problem, we allow a budget of 50× (D+ 2)
likelihood evaluations. For more details on the benchmark procedure, see Acerbi (2018).

Algorithms In this paper, we focus on comparing different versions of the VBMC al-
gorithm (see Acerbi, 2018 for a comparison between VBMC and several other inference
algorithms). By default, VBMC uses the apro acquisition function and mNQ GP mean
function. We show here results for the following variants of the VBMC algorithm:

1. Different acquisition functions: vanilla uncertainty sampling (aus); GP-uncertainty
sampling (agpus); iteration-dependent logarithmic uncertainty sampling (aln) and square-
root uncertainty sampling (asqrt).

2. Different GP mean functions: constant (mCN); squared exponential (mSE).

Results for synthetic likelihoods are shown in Figure 1, for the neuronal model in Figure 2.
In Figure 1, aus performs almost identically to apro, such that the plots for these two
acquisition functions are overlapping almost everywhere.

Acquisition Functions For the GUS acquisition function, described in Equation (2), we
consider the following parameter settings: α = 1, β = 2, γ = 0 (aus); α = 1, β = 1, γ = 1
(apro); α = 1, β = 0, γ = 2 (agpus); α(n) = lnn, β = 1, γ = 1 (aln); α(n) =

√
n, β = 1, γ = 1
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Figure 1: Synthetic likelihoods. A. Median absolute difference between the ELBO and
true log marginal likelihood (LML), as a function of likelihood evaluations, on the
lumpy (top), Student (middle), and cigar (bottom) problems, for D ∈ {2, 6, 10}
(columns). B. Median “Gaussianized” symmetrized KL divergence between the
variational posterior and ground truth. For both metrics, shaded areas are 95 %
CI of the median, and we consider a desirable threshold to be < 1 (dashed line).
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Figure 2: Real neuronal model likelihoods. A. Median absolute difference between the
ELBO and true LML, as a function of likelihood evaluations, for two distinct neu-
rons (D = 7). B. Median “Gaussianized” symmetrized KL divergence between
the variational posterior and ground truth. See also Figure 1.

(asqrt).
2 Somewhat surprisingly, the performance of VBMC in our benchmark is quite

robust across parameters of the generalized uncertainty sampling acquisition function. The
only notable results are that: on real data (but not on synthetic functions) aus performs

2. aus and apro were introduced and tested in Acerbi (2018); we report them here for comparison.
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substantially worse than the other choices; on some synthetic functions (but not on real
data), aln and less so asqrt perform marginally better than the rest. More challenging
benchmark densities may be able to reveal larger differences in the performance of various
acquisition functions, but for now our original recommendation of using apro still holds.

GP Mean Functions Having fixed the acquisition function to apro, we tested two ad-
ditional GP mean functions, mCN and mSE. On several problems, both variants perform
worse than the originally proposed mNQ. In particular, we observe that the variational
posterior becomes unstable when it finds a solution with an “infinitely flat” mixture com-
ponent — the reason being that the GP posterior mean tends to a small nonzero value far
away from the current training set (that is, the exponentiated GP is not a proper, inte-
grable probability density). Heuristic solutions, such as bounding the scaling factor of each
variational component (preventing them from “exploding” to infinity), allow the algorithm
to run, but the presence of these runaway components still negatively affect performance.
Thus, the negative quadratic GP mean function introduced (somewhat understatedly) in
Acerbi (2018) is a crucial component for the success and stability of the algorithm.

5. Discussion

We investigated the performance of VBMC under different acquisition functions belonging
to the generalized uncertainty sampling (GUS) family, and different GP mean functions
compatible with Bayesian quadrature.

On the one hand, our findings could appear as a ‘null result’ in that for none of the
investigated features we obtained a systematic improvement over our original choices for the
VBMC algorithm (except perhaps for sporadic improvements with the iteration-dependent
aln). On the other hand, this work provides empirical validation for seemingly arbitrary
choices in the original paper, now justified by showing that either (1) the algorithm is
fairly robust to changes in the details of the feature (i.e., parameters of GUS), or (2) the
original choice is best among a few reasonable alternatives for both empirical and theoretical
reasons (i.e., only the negative quadratic GP mean function, mNQ, realizes a proper posterior
distribution, required for stability).

Alternative GP Representations Specifically with respect to properties of the GP
surrogate used for VBMC, two main questions remain open.

First, we can ask if there are more complex covariance or mean functions of interest that
are still amenable to closed-form Bayesian quadrature (see Appendix A). For example, we
could include a quadratic form directly in the covariance function, as opposed to the mean
function. Another interesting direction is to consider covariance or mean functions that are
linear combinations and products of location-dependent radial basis functions, which could
be used to introduce non-stationary behavior in the GP (Martinez-Cantin, 2018).

Second, we note that the Gaussian kernel, due to its smoothness, may be inadequate to
model some posterior distributions. More in general, there may be problems for which we
want to use covariance or mean functions which do not support a closed-form expression for
the surrogate ELBO. In these cases, it might be worth dropping the analytical requirement,
and approximate the expected log joint and its gradient numerically. Investigating VBMC
under a more general class of representations remains avenue for future work.
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Appendix A. Expected Log Joint via Bayesian Quadrature

An interesting question is which covariance and mean functions afford an analytical com-
putation of the expected log joint in Equation (1). For a given variational posterior qφ
represented by a Gaussian mixture model, as per Section 2, the expected log joint is

Eφ [f(x)] =

K∑
k=1

wk

∫
N
(
x;µk, σ

2
kΣ
)
f(x)dx ≡

K∑
k=1

wkIk. (S1)

We recall that the posterior predictive mean of a GP f , given training data Ξ = {X,y},
where X are n training inputs with observed values y, is (Rasmussen and Williams, 2006)

f(x) = κ(x,X)
[
κ(X,X) + σ2obsIn

]−1
(y −m(X)) +m(x), (S2)

where κ(·, ·) and m(·) are, respectively, the GP covariance and mean functions. Thus, for
each integral in Eq. S1, we have in expectation over the GP posterior (Acerbi, 2018)

Ef |Ξ [Ik] =

∫
N
(
x;µk, σ

2
kΣ
)
f(x)dx

=

[
σ2f

∫
N
(
x;µk, σ

2
kΣ
)
κ (x,X) dx

] [
κ(X,X) + σ2obsI

]−1
(y −m(X))

+ σ2f

∫
N
(
x;µk, σ

2
kΣ
)
m (x) dx.

(S3)

From Equation (S3), we see that functional forms for the covariance and mean that would
afford an analytical calculation of the integrals are Gaussian, exponential, polynomial, and
products and linear combinations of such elementary forms (Ghahramani and Rasmussen,
2002). We are not aware of other general functional forms that could be meaningfully used
in this context.

Appendix B. Reduced Formulation of Generalized Acquisition Function

We show here that the generalized acquisition function described by Equation (2) can be
reduced from three to two parameters with virtually no loss of generality.

First, the location of the optimum of a function is invariant to monotonic3 transfor-
mations of the output, and moreover in VBMC we optimize the acquisition function using
CMA-ES (Hansen et al., 2003), which only uses the ranking of the objective function —
making it invariant to monotonic transformation of the objective. Thus, we can apply a
monotonic transformation to the acquisition function with absolutely no change to the entire
optimization process. Second, we assume that for any “uncertainty sampling” acquisition
function we want to keep dependence on the GP posterior predictive variance, that is α > 0.

With these considerations, we can rewrite Equation (2) as

log agus(x) ∝ log VΞ(x) + β̃ log qφ(x) + γ̃fΞ(x), with β̃ =
β

α
, γ̃ =

γ

α
. (S4)

which only depends on two parameters, and the logarithmic form is numerically convenient
to avoid overflows.

3. In all this paragraph, we mean monotonic with positive derivative.
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